Predmet:

LABORATORIJSKI IZVJEŠTAJ

istraživanja provedenih na skulpturama u Parku skulptura, Sisak

- Analiza rendgenske fluorescencije (XRF)
- Ramanova spektroskopija (RS)
- Infracrvena spektroskopija preko Fourierove transformacije (FT-IR)

Izv.prof. dr.sc. Vladan Desnica Zagreb, svibanj 2018

1. Uvod

Koristeći tri analitičke metode istraženo je deset skultpura iz Parka skulptura u Sisku. Od ovih spektroskopskih metoda jedna je elementnog karaktera (analiza rendgenske fluorescencije – engl. X-ray fluorescence, XRF) dok su ostale dvije molekularnog karaktera (Ramanova spektroskopija (RS) i spektroskopija infracrvenog zračenja preko Fourierove transformacije (FT-IR)). Prilikom istraživanja nastojao se utvrditi elementni i molekularni sastav pigmenata te koristeći znanstvene metode provesti što precizniju karakterizaciju korištenih materijala. Ove metode izabrane su kao maksimalno komplementarne, s idejom što kvalitetnije i sigurnije karakterizacije materijala, s naglaskom na što veću nedestruktivnost i neinvazivnost.

2. Analitičke metode

2.1. XRF spektroskopija

Za elementnu analizu je korišten prijenosni spektroskopski XRF uređaj, koji omogućuje nedestruktivna i neinvazivna (bez dodira s materijalom i bez uzimanja uzoraka) *in-situ* istraživanja na objektima i izvan laboratorija, tj. na terenu. Rezultati analiza su elementi unutar materijala, preko kojih se posljedično zaključuje o kemijskom sastavu i svojstvima uzorka/objekta.

Pri analizi dobivenih rezultata i interpretaciji spektara treba uzeti u obzir da, iako XRF spada u površinsku metodu, informacije koje se ovdje dobijaju mogu izvirati iz dubine do oko 100-300 mikrometara (0,1 – 0,3 mm), što znači da se mogu detektirati sastavni elemente slojeva pigmenata i materijala sve do te dubine, dakle i ispod vidljivog, površinskog sloja. To znači da su u svakom spektru zapravo sadržane informacije iz nekoliko slojeva boje, a s obzirom da je samo površinski sloj vidljiv oku, to je često vrlo otežavajuća okolnost prilikom interpretacije instrumentalno dobivenih rezultata. Prilikom isčitavanja spektara također treba voditi računa da se ovdje radi o semi-kvantitativnoj metodi, tj. određivanje koncentracije je isključivo relativno. To znači da, iako je visina signala (peak height) pojedinog elementa u spektru proporcionalna njegovoj koncentraciji, samo na osnovu visine signala nije moguće utvrditi njegov točan postotni udio, jer na količinu detektiranog signala osim njegove koncentracije utječe cijeli niz drugih faktora (tzv. matrični efekti, međusobna interakcija elemenata unutar materijala, dubina pobude ovisno o energiji primarnog snopa, stupanj atenuacije fluorescentnog zračenja u zraku i samom materijalu ovisno o energiji sekundarnog zračenja itd.). Također, bitno je naglasiti da najjači signal (relativna najveća koncentracija) ne dolazi nužno iz elemenata koji su odgovorni za neku primarnu boju koja se istražuje, već percipirana boja može biti rezultat nekih elemenata (tj. pigmenta) koji su dodani u samo maloj koncentraciji (tj. količini).

Nadalje, važno je znati da XRF omogućuje detekciju elemenata atomskog broja od ca. 12 – 92 (od natrij do urana), tako da je njome moguće identificirati samo anorganske spojeve. Organski spojevi, dakle organski pigmenti i bojila koja su na bazi ugljika, ovom metodom ne mogu biti otkriveni.

2.1. 1. Instrumentalni paramtetri

Prilikom mjerenja visoki napon rendgenske cijevi iznosio je 35 kV, struja filamenta 0,1 mA, dok je vrijeme trajanja mjerenja po spektru iznosilo 100 s. Mjerna glava instrumenta sastoji se iz transmisijske rendgenske cijevi snage 10 W (50 kV maks. napon, 0,2 mA maks. struja, Rh anoda), SDD detektora hlađenog pomoću Peltier elementa (rezolucija FWHM = 145 eV) i dva lasera, koja služe za pozicioniranje. Geometrija pobude i detekcije iznosi 0°/45° u odnosu na planarnu ravninu uzorka. Laseri su postavljeni i usmjereni na način da se njihovo sjecište podudara sa sjecištem osi rendgenske cijevi i detektora na objektu. Tako se postiže precizno pozicioniranje unutar mjernog područja kao i omogućuje točno reproduciranje geometrijskih parametara. Kolimator fokusira rendgensko zračenje i osigurava ozračivanje uzorka snopom od ca. 1,5 mm u dijametru.

2.2. Ramanova spektroskopija

Ramanova spektroskopija bazira se na činjenici da se u određenim slučajevima mala količina raspršenog vidljivog svjetla s određenih molekula razlikuje od pobudnog, upadnog svjetla (otkrio 1928.g. indijski fizičar C.V. Raman). Razlike su u frekvenciji raspršenog zračenja, a ovise o kemijskoj strukturi molekula odgovornih za raspršenje. Dakle, Ramanov efekt odnosi se na malu količinu svjetlosti koja se rasprši neelastično od molekule i posjeduje drugu valnu duljinu od upadnog svjetla. Ova apsorbirana energija je svojstvena svakoj molekuli, ovisno o valnoj duljini. Promatranje pomaka u frekvenciji (tzv. Ramanov pomak – engl. Raman shift) daje informacije iz kojih se zaključuje o molekularnoj strukturi nepoznatog uzorka. Raman instrumenti koriste lasere, s valnim duljinama izabranima tako da daju što bolji omjer signal/šum.

2..2.1. Instrumentalni parametri

Za pobudu je korišten laserski izvor svjetlosti od 785 nm firme OceanOptics, USA, a za detekciju Ramanovog raspršenja korišten je spektrometar QE Pro-Raman, iz iste firme. Spektrometar je kalibriran na područje od 150-3950 cm⁻¹, s rezolucijom od ca. 13 cm⁻¹. Mjerni signal do i od uzorka prenosi se preko optičkih vlakana, pomoću kojih se može izabrati bilo koja točka na objektu, neovisno o njegovom obliku ili veličini. Snaga lasera iznosila je 150 mW, vrijeme mjerenja iznosilo je 45 s po spektru (3 skena po 15 sekundi).

2.3. FT-IR spektroskopija

Za utvrđivanje organskih materijala (npr. vezivo, plastične mase i sl.) korištena je infracrvena spektroskopija s Fourierovom transformacijom. IR spada među najstarije metode kemijske analize (uglavnom kompleksnih molekula, ali nije pogodna za metale), a koristi apsorpciju infracrvenog zračenja za dobivanje informacija o lokalnim vezama u molekulama. Kod "Fourier-transform" spektrometara, sve frekvencije se mjere istovremeno i dobiveni interferogram se računalno obrađuje da bi se dobilo traženo frekventno područje.

2.3.1. Instrumentalni parametri

Korišten je FT-IR instrument Spectrum Two firmePerkin-Elmer, USA, s ATR jedinicom i dijamantnom prizmom. Područje mjerenja iznosilo je 4000 cm-1 – 450 cm-1, broj scanova4, rezolucija4cm-1.

3. Rezultati

Rezultati dobiveni analizom rendgenske fluorescencije (XRF) sažeti su u tabelama unutar ovog poglavlja. U stupcu "detektirani elementi" masno su otisnuti elementi s najjačim intenzitetom (proporcionalno njivovoj koncentraciji), obično su navedeni ostali elementi, a u zagradama su navedeni elementi koji su detektirani samo u tragovima. Površina analiziranog područja je ca. 1,5 mm u dijametru, a instrumentalni parametri XRF uređaja namješteni su bili na 35 kV i 0,1 mA, dok je vrijeme snimanja po spektru iznosilo 100 s. Kao primjer, na slikama 1-3 prikazane su interpretacije dvaju XRF spektara, snimljenih na žutom području odnosno na bronci.

Slika 1. XRF spektar snimljen na žućkastom području (redni br. 1, iz tabela ispod), s gornje strane. Jaki intenziteti olova i kroma ukazuju da se radi o kromovoj žutoj (olovni kromat) na željeznoj podlozi, uz moguću prisutnost olovnog oksida kao zaštite (poznat kao pigment minij).

Slike 2 i 3. Primjer XRF spektra snimljenog na komadu bronce (mjerna točka br. 7 iz tabela ispod), prikazan u linearnoj skali (slika lijevo) i logaritamskoj skali (slika desno). Iz ovog primjera je vidljivo da je u slučajevima gdje je jedan element izrazito dominantan, interpretacija je svakako bila vršena koristeći logaritamsku skalu, jer je jedino na taj način u tom slučaju moguće utvrditi koji su ostali elementi sadržani u uzorku. U slici desno, osim bakra i kositra, također su idntificirani željezo, cink i olovo. Signal argona je rezultat ionizacije tog plina u zraku tijekom mjerenja, a Rh signal potječe zbog rodijeve rendgenske cijevi. Signali označeni oznakama XX i YY su difrakcijski signali uvjetovani mjerenjem na metalnoj površini (XX) odnosno tzv. zbrojni signali (engl. sum peaks) uslijed jakog odziva bakra (YY). Radi preglednosti i dosljednosti, svi spektri u ovom izvještaju (u tabelama) prikazani su samo u linearnoj skali.

Sa skulptura Vere Fisher, Dubravke Dube Sambolec i Milene Lah bilo je uzeto nekoliko malih uzoraka trusne boje, koji su također analizirani i preko FT-IRa, prilikom čega je utvrđeno da se u svim slučajevima radilo o bojama s alkidnim vezivima. 3.1. Vera Fisher – Bez naziva, 1980.

Slike 4 i 5 . Skulptura i proces mjerenjas XRFom

Red. broj/ mjerna točka	Broj/ime uzorka i opis mjernog područja	Detekt. elementi	Interpretacija rezultata/ komentar	XRF Spektar
1	Žuta, žućkasti dio, gore	Pb, Ca, Cr, Fe, Zn, Ba (S)	Olovni kromat – kromova žuta, moguće i olovni oksid (minij) kao zaštita (probija kroz žutu boju iz donjeg sloja), barit kao punilo	1935 1999 1999 1999 1999 1999 1999 1999
2	Metal, dio bez boje (nešto ostataka boje iz mjerne točke 1)	Fe, Pb, (Al, S, Ca, Cr, Cu, Zn)	Željezna skulptura s ostacima slojeva iz točke 1	та та та та та та та та та та та та та т

Slike 6 i 7. Uzorak žute boje skinut sa skulpture (veličina ca. 5 x 8 mm), dio koji je bio djelomično već oljušten. Lijeva slika prikazuje gornji, žućkasti sloj boje (na donjem dijelu je vidljivo mehanički očišćeno područje na kojem je provedena Ramanova spektroskopija), desna slika prikazuje Ramanov spektar mjeren na uzorku (plavi spektar). Kroz usporedbu s bazom podataka potvrđeno je da se radi o kromovoj žutoj, s nešto signala minija (vjerojatno probija kroz žuti sloj, koji je izuzetno tanak)

Slike 8 i 9. Isti uzorak kao na slici 3, ali (donja) strana koja je bila u dodiru sa skulpturom (lijeva slika). Desna slika prikazuje Ramanov spektar mjeren na uzorku (plavi spektar). Kroz usporedbu s bazom podataka potvrđeno je da se radi o olovnom oksidu, tzv. miniju

3.2. Ratko Petrić – Čovjek stroj, 1975.

Slike 10 i 11. Skulptura i proces mjerenja XRFom

Red. broj/ mjerna točka	Broj/ime uzorka i opis mjernog područja	Detekt. elementi	Interpretacija rezultata/ komentar	XRF Spektar
3	Siva	Ti, Ca,Fe, Zn, (Al, Si, S, K, Ba, Pb)	Titanov dioksid, cinkov oksid, moguće čađavo crna i nešto talka i barita kao punila	199 199 199 199 199 199 199 199 199 199

4	Metalni dio, bez boje, pored br. 3	Fe, Ti (Al, S, K, Ca)	Željezna skulptura s ostacima slojeva iz točke 3	ин 109 109 109 109 109 109 109 109
5	Bijela, uz točke 3 i 4	Ti, Ca,Fe, (Cu, Zn, Pb)	Titanov dioksid, željezni oksid	1999 1999 1999 1999 1999 1999 1999 199
6	Metal	Cu, Fe, Zn, Sn, (Pb)	Bronca	10 10 10 10 10 10 10 10 10 10
7	Metal, s korozijom	Cu, Cl, Fe, Zn, Sn, (Pb)	Bronca, korodirana, moguće kroz klorom bogate soli	16 16 700 160

Slika 12. Rezultati dobiveni FT-IR analizom na uzorku plastične mase iz "glave" skulpture Čovjek stroj. Kroz usporedbu s bazom podataka, vidljivo je da se radi o kopolimeru stirena i akrila s vjerojatno dodanim sintetskim ultramarinom.

3.3. Mila Kumbatović – Fontana, 1975.

Slike 13-15 . Skulptura za vrijeme mjerenja i detalji skulpture

Red. broj/ mjerna točka	Broj/ime uzorka i opis mjernog područja	Detekt. elementi	Interpretacija rezultata/ komentar	XRF Spektar
8	Metal, mali obli "mjedeni" detalj	Cu, (S, Fe)	Praktički čisti bakar (bez očekivanog cinka)	ta 314 114 114 114 114 114 114 114
9	Siva, dio na željeznom ostatku skulpture	Ti, Ca, Fe, Zn, (Al, Si, S, K, Ba, Pb)	Titanov dioksid, cinkov oksid, moguće čađavo crna i nešto talka i barita kao punila	ине 1977 1978 1979 1979 1979 1979 1979 1979

10	Bijela	Ti, Fe, Ca, Zn, Pb, (Al, Si, S, K, Cu)	Titanov dioksid, željezni oksid, željezna skulptura	та та та та та та та та та та
11	Metal, pored sive i bijele	Fe, Ca, Ti, (Al, Si, P, S, K, Cr, Mn, Ni, Zn, Cu, Pb)	Željezna skulptura, nešto ostataka titanovog dioksida	10 10 401 401 501 501

3.4. Branko Ružić – Vrata, 1984.

Slike 16-20 . Skulptura za vrijeme mjerenja i detalji površine

Red. broj/ mjerna točka	Broj/ime uzorka i opis mjernog područja	Detekt. elementi	Interpretacija rezultata/ komentar	XRF Spektar
12	Crvena	Fe, Ca, Ti, (Cr, Mn, Ni, Cu, Pb)	Željezni oksid	19. 13. 19. 19. 297 299

13	Crna	Fe, Ca, Zn, Ba, Pb, (S, Mn, Cu, Ni)	Željezna podloga, moguće sa slojem željeznog oksida, organske crne s kredom i baritom kao punilom (moguće i cinkom kao zaštitom)	1955 1957 1957 1957 1957
14	Metal, sama skulptura	Fe, (K, Ca, Mn, Cu, Zn, Pb)	Željezo	74. 74. 75. 75. 755 755 755 755 757 757 757 75

3.5. Milivoje Babović – Skulptura V, 1981.

Slike 21 i 22. Skulptura za vrijeme mjerenja i detalj površine

Red. broj/ mjerna točka	Broj/ime uzorka i opis mjernog područja	Detekt. elementi	Interpretacija rezultata/ komentar	XRF Spektar
15	Sivo-crna	Fe, Ca, Zn, Ba, (Si, S, K, Sr, Pb)	Željezna podloga, moguće sa slojem željeznog oksida, organske crne s kredom i baritom kao punilom (moguće i cinkom kao zaštitom)	2015 2015 2017 2017 2017 2017 2017 2017 2017 2017

16	Cijev	Zn, Fe, (Al, S, K, Ca, Ti, Mn, Co)	Pocinčana cijev	20 27 27 39 39 39 39 39 39 39 39 39 39 39 39 39
17	Crna na metalu, na bazi skulpture	Fe, Ca, Zn, Ba, Pb, (Si, P, S, K, Cu, Sr)	Željezna podloga, moguće sa slojem željeznog oksida, organske crne s kredom i baritom kao punilom (moguće i cinkom kao zaštitom)	200 201 202 202 202 203 204 204 204 205 205 205 205 205 205 205 205 205 205
18	Čisti metal, na bazi, pored br. 17	Fe, (K, Ca, Mn, Cu, Zn, Pb)	Željezna baza	999 2001 2005 566 566 567 568 568 568 568 568 568 568 568 568 568
19	Beton na bazi	Ca, Fe, Si, K, Mn, Zn, (Ti, Sr)	Beton, snimljeno radi usporedbe s mjerenjem br. 20	966 275 275 289 289 299 299 299

20	Crna na betonu, pored br. 19	Fe, Ca, Zn, Ba, Pb, (Si, S, K, Mn)	Ovom metodom nije moguća sigurna identifikacija	2017 2016 201 201 201 201 201 201 201 201 201 201
----	---------------------------------------	--	---	--

3.6. Erik Lovko – Stup puzzle, 1978.

Slike 23 i 24. Skulptura za vrijeme mjerenja i detalj površine

Red. broj/ mjerna točka	Broj/ime uzorka i opis mjernog područja	Detekt. elementi	Interpretacija rezultata/ komentar	XRF Spektar
21	Žuta1, unutarnja, donja žuta	Fe, Cr, Ba, Pb, (S, K, Ti, Sr)	Željezni oksidi, kromova žuta (olovni kromat), barit, olovno bijela	566 576 596 597 598 791 791
22	Žuta2, gornja žuta	Ti, Fe, Pb, Ca, Cr, (Cu, Zn)	Željezni oksidi, kromova žuta (olovni kromat), titanova bijela, kreda, olovno bijela	989 1997 199 199 199 199 199

23	Plava1, gornja, deblja	Fe, Cu, Ba, Pb, (Ca, Mn)	Plava na bazi bakra (moguće bakreni ftalocijanin), barit	2487 2481 2481 2481 2481 2481 2481 2481 2481
24	Plava2, donja, unutarnja	Fe, Cu, Ba, Pb, (Ca, Mn)	Plava na bazi bakra (moguće bakreni ftalocijanin), barit, nešto manje olovno bijele nego u br. 23	7959 2669 2669 2669 2667 2667 2667 2667 266
25	Metal, ispod plavih, lijevo od br. 23 i 24	Fe, Ba, (S, K, Cr, Cu, Pb)	Željezo, s malo ostataka barija	247 247 318 318 318 318 318 318 318 318 318 318

3.7. Dubravka Duba Sambolec – Ritam, 1978.

Slike 25 i 26. Skulptura i detalj površine

Red. broj/ mjerna točka	Broj/ime uzorka i opis mjernog područja	Detekt. elementi	Interpretacija rezultata/ komentar	XRF Spektar
26	Metal, ostrugani narančasti dio (ali i s malo ostataka narančaste)	Fe, Pb, (Al, S, Cr, Cu)	Željezo, ostaci minija	ул 19 19 19

27	Narančasto -crvena	Pb, Fe, (Cu, Zn)	Olovni oksid (minij)	548 258 768 768
28	Crvena1, lijevo od 27, prva, donja crvena	Pb, Zn, Ba, (Ca, Fe, Sr)	Nedefinirana crvena, nešto olovnog oksida (minija), cinkov oksid, barit	547 758 768 769
29	Crvena2, gornja crvena	Fe, Ba, Pb, Ca, Zn, Sr, (Si, K, Cu)	Nedefinirana crvena, crveni željezni oksid, olovni oksid (minij), cinkov oksid, barit	719 778 80 80 70
30	Bijela	Pb, (Si, Fe, Sr)	Olovno bijela	507 108 709 710

Slika 27. Spektar snimljen Ramanovom spektroskopijom na narančasto-crvenom području (XRF mjerna točka br. 27). Spektru je dodan referentni spektar (plavi spektar) na standardnom uzorku olovno crvene (minij). Poklapanje na Ramanovim pomacima od 313, 393 i 548 cm-1 ukazuje na korištenje tog pigmenta. Iako je za pobudu korišten IR laser od 785 nm, koji je manje osjetljiv na fluorescirajuća svojstva materijala od uobičajenih Raman lasera u vidljivom području (npr. 532nm i 633 nm), relativno jaka fluorescencija prouzročila je snažan šum u spektru i sakrila slabije Ramanove signale iz uzorka.

3.8. Zvonimir Kamenar – Leptir, 1982.

Slike 28 i 29. Skulptura i detalj površine

Red. broj/ mjerna točka	Broj/ime uzorka i opis mjernog područja	Detekt. elementi	Interpretacija rezultata/ komentar	XRF Spektar
31	Metal, korodirani	Fe, Zn, Ba, (S, K, Ca, Cr, Mn, Cu)	Željezo, s ostacima cinka i nešto barija	19 19 19 19 19 19 19 19 19 19 19 19 19 1
32	Siva, preko metala (br. 31)	Zn, Ca, Fe, Ba, (S, K, Sr)	Cinkova bijela, s baritom, kredom i moguće organskom crnom	14 14 147

3.9. Milena Lah – Galebovo krilo, 1973.

Slike 30-32. Skulptura i detalji površine

Red. broj/ mjerna točka	Broj/ime uzorka i opis mjernog područja	Detekt. elementi	Interpretacija rezultata/ komentar	XRF Spektar
			Olovni oksid	
			(minij), zaštita	
			na bazi cinka	
			(moguće	
		Ca, Fe,	cinkov kromat	2933
22	Narančasta	Zn, Cr,	– pasivirajuće	2000
55	(najdonja)	Pb, (K,	djelovanje na	
		Mo)	željezo),	
			željezna	770 7
			podloga	122 1121 1121 1120 1120 1120
			(struktura	
			skulpture)	

34	Crvena, preko br. 33	Fe, Zn,Ca, Cr, Ba, Pb, (Al, Si, K, Mo)	Crveni željezni oksid preko br. 33, moguće cinkov kromat	619 231 247
35	Žuta, preko crvene (br. 34)	Cr, Fe, Zn, Ba, Pb, Sr, (Mo)	Kromova žuta (olovni kromat), titanova bijela, vjerojatno s nešto cinka (moguće cinkov kromat)	950 951 979
36	Metal, najdonji, ostrugani	Zn, Fe, (Al, S)	Pocinčana željezna skulptura	255 255
37	Metal2, gornji sloj metala, ispod narančaste	Zn, Al, Fe, Pb, (K, Ca, Ti, Cr, Ni)	Područje aluminija (boje), pocinčana željezna skulptura, ostaci narančaste (br. 33)	955 957 957 957 957

Slika 33. Spektar snimljen Ramanovom spektroskopijom (plavi spektar) na žutom području (XRF mjerna točka br. 35). Spektar je preklopljen s referentnim spektrima (narančasti i crveni spektar) standardnih uzorkaka titanove bijele u rutil fazi i kromove žute. Poklapanje glavnih vrhova Ramanovih pomaka ukazuje na korištenje tih pigmenta. Iako je za pobudu korišten IR laser od 785 nm, koji je manje osjetljiv na fluorescirajuća svojstva materijala od uobičajenih Raman lasera u vidljivom području (npr. 532nm i 633 nm), relativno jaka fluorescencija prouzročila je snažan šum u spektru i sakrila slabije Ramanove signale iz uzorka

3.10. Zlatko Zlatić – Zgurić i obitelj, 1978.

Slike 34 i 35. Skulptura i detalji površine s ucrtanim mjernim točkama na kojima su bila provedena XRF mjerenja (brojevi odgovaraju rednim brojevima u tabeli ispod)

Red. broj/ mjerna točka	Broj/ime uzorka i opis mjernog područja	Detekt. elementi	Interpretacija rezultata/ komentar	XRF Spektar
38	Metal, bez boje	Fe, Zn, (Al, K, Ca, Mn, Cu, Pb)	Željezna struktura, nešto cinka i aluminija (ostaci od oguljenih gornjih slojeva)	50 50 50 51 51 51 51 51 51 51 51 51 51 51 51 51
39	Srebrna (alu) boja	Zn, Al, Fe, (Pb)	Aluminijska boja, s udjelom cinka	54 54 54 54 54 54 54 54 54 55 55 55 55 5

40	Tamno siva (oguljena srebrna br. 39), prvi sloj preko željeza	Zn, Fe, (Al, Si, P, S, K, Ca)	Zaštitini premaz na bazi cinka	76 76 76 76 76 76 76 76 76 76 76 76 76 7
41	Zelena, preko srebrne (br. 39)	Zn, Ba, Fe, (Al, Si, P, S, K, Ca)	Ovom metodom nije moguće utvrditi zeleni pigment (povećana koncentracija Si, S, K, Fe, Ba)	16. 269 269
42	Srebrna2, odmah pored zelene br. 41	Zn, Fe, (Al, S, Ca)	Aluminijska boja, s udjelom cinka	16 16 17 17 17 17 17 17 17 17 17 17 17 17 17

4. Zaključak

XRF-om detektirani elementi i preko njih interpretirani pigmenti (potvrđeni Ramanovom spektroskopijom) odgovaraju pigmentima očekivanim na skulpturama Parka skulptura u Sisku. Na uzorcima na kojima je provedena i FT-IR spektroskopija utvrđeno je i vezivo – alikidne smole. Slijedi lista pigmenata/premaza i njihovih kemijskih formula. Nekoliko boja nije bilo moguće utvrditi i to je navedeno u tabelama s rezultatima.

```
Kemijski sastavi interpretiranih boja/pigmenata:
olovno bijela – PbCO<sub>3</sub>/Pb(OH)<sub>2</sub>
kromova žuta – PbCrO<sub>4</sub>.PbSO<sub>4</sub>
željezni oksid – Fe<sub>2</sub>O<sub>3</sub>
minij – Pb<sub>3</sub>O<sub>4</sub>
ultramarin (lazurit) – S<sub>3</sub><sup>-</sup> i S<sub>2</sub><sup>-</sup> ioni u natrijevoj alumino-silikatnoj matrici Na<sub>8</sub>[Al<sub>6</sub>Si<sub>6</sub>O<sub>24</sub>]S<sub>n</sub>
ftalocijanin plava (bakrov ftalocijanin) – sintetska organska plava na bazi bakra C<sub>32</sub>H<sub>16</sub>CuN<sub>8</sub>
cinkov oksid – ZnO
cinkov kromat – ZnCrO<sub>4</sub>
barit – BaSO<sub>4</sub>
kreda – CaCO<sub>3</sub>
titanov dioksid – TiO<sub>2</sub>
```